Bernoulli polynomial

Bernoulli polynomial
French\ \ polynômes de Bernoulli
German\ \ Bernoullisches Polynom
Dutch\ \ Bernoulli-polynoom; Bernoulli-veelterm
Italian\ \ polinomio di Bernoulli (Giovanni)
Spanish\ \ polinomio de Bernoulli
Catalan\ \ polinomi de Bernoulli
Portuguese\ \ polinómio de Bernoulli
Romanian\ \ ecuaţia Bernoulli
Danish\ \ Bernoulli polynomium
Norwegian\ \ Bernoulli polynom
Swedish\ \ Bernoulli polynom
Greek\ \ πολυώνυμο Bernoulli
Finnish\ \ Bernoullin polynomi
Hungarian\ \ Bernoulli-polinom
Turkish\ \ Bernoulli çokterimlisi; Bernoulli polinomu
Estonian\ \ Bernoulli polünoom
Lithuanian\ \ Bernoulli daugianaris, polinomas; Bernulio daugianaris, polinomas
Slovenian\ \ Bernoulli polinom
Polish\ \ wielomian Bernoulliego
Russian\ \ многочлен Бернулли
Ukrainian\ \ поліном Бернулі
Serbian\ \ -
Icelandic\ \ Bernoulli margliða
Euskara\ \ Bernoulli polinomio
Farsi\ \ ch ndjomle-eeye Bernoulli
Persian-Farsi\ \ چندجمله‌اي برنولي
Arabic\ \ كثيرة حدود برنولي
Afrikaans\ \ Bernoulli-polinoom
Chinese\ \ 伯 怒 里 多 项 式
Korean\ \ 베르누이 다항식

Statistical terms. 2014.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Bernoulli polynomials — In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence… …   Wikipedia

  • Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… …   Wikipedia

  • Polynomial lemniscate — In mathematics, a polynomial lemniscate or polynomial level curve is a plane algebraic curve of degree 2n, constructed from a polynomial p with complex coefficients of degree n.For any such polynomial p and positive real number c, we may define a …   Wikipedia

  • Polynomial sequence — In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Examples * Monomials * Rising factorials * Falling …   Wikipedia

  • List of polynomial topics — This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.Basics*Polynomial *Coefficient *Monomial *Polynomial long division *Polynomial factorization *Rational function *Partial… …   Wikipedia

  • Bernstein polynomial — In the mathematical field of numerical analysis, a Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the Bernstein form, that is a linear combination of Bernstein basis polynomials.A numerically stable way to… …   Wikipedia

  • Euler–Maclaurin formula — In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using… …   Wikipedia

  • Faulhaber's formula — In mathematics, Faulhaber s formula, named after Johann Faulhaber, expresses the sum:sum {k=1}^n k^p = 1^p + 2^p + 3^p + cdots + n^pas a ( p + 1)th degree polynomial function of n , the coefficients involving Bernoulli numbers.Note: By the most… …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • Digamma function — For Barnes s gamma function of 2 variables, see double gamma function. Digamma function ψ(s) in the complex plane. The color of a point s encodes the value of ψ(s). Strong colors denote values close to zero and hue encodes the value s argument …   Wikipedia

  • Smith–Minkowski–Siegel mass formula — In mathematics, the Smith–Minkowski–Siegel mass formula (or Minkowski–Siegel mass formula) is a formula for the sum of the weights of the lattices (quadratic forms) in a genus, weighted by the reciprocals of the orders of their automorphism… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”